Water Conservation Options for Wet-Cooled Power Plants

Alan Benefiel John S. Maulbetsch Michael N. DiFilippo

CEC/EPRI Advanced Cooling Strategies/ Technologies Conference Sacramento, California May 31---June 2, 2005

Paleo-Climate Record

Water Use at San Juan

- Units 1, 2 & 4 Cooling Towers
 - Approx. 16,000 acre-feet/year
- Objective
 - Save 10 to 30%
 - Reduction of 1,500 to 5,000 acre-feet/year

Approaches

- Modify wet tower operation
- Add supplemental dry cooling
- Use alternative, "non-fresh" water sources

Evaluation

Evaluate on basis of

- Capital cost
- Operating cost (fans/pumps)
- Effect on plant
 - Cold water temperature
 - Turbine backpressure
 - Heat rate
 - Coal used
 - Lost revenue
- Total evaluated cost

Starting Points

- Site meteorology
- Current water use profile
- Current cold water temperature profile
 - Turbine heat rate
 - Economic assumptions

Temperature Duration Curves

San Juan Temperature Duration Curves

Water Use & Cold Water Temperatures

Unit 4 Existing Tower Performance

Economic Assumptions

- Incremental fuel cost
 - \$0.40/Million Btu
 - Cost of power
 - \$0.025/kWh
- **Replacement Energy**

Temperature Duration Curves

San Juan Temperature Duration Curves

Supplemental Dry Cooling

- Install air cooled heat exchangers to take load off existing wet towers
- Same concept as Unit 3 but implemented as separate structures

SJGS Unit 3 Cooling Tower

Unit 3 Example

- Series arrangement
- Modulated wet section
- Annual water savings of 70%

Unit 3 Performance

Options—Design & Operation

- System arrangements
 - Parallel, series, split series
- Wet tower operation
 - Full on or modulated
- Dry exchanger operation
 - By-pass/fans off during hottest hours
 - Freeze protection

Air Cooler – Cooling Tower Configuration - Series

Parallel Arrangement

Air Cooler – Cooling Tower Configuration – Split Series

Options

		Wet Tower		
Source	Arangement	Operation	Cold Water Delivered	
Α	Series	Modulated	Design temperature 80 F year round	
В	Series	Full	Close to current profile	
С	Series	Full	Close to current profile	
D	Split series	Modulated	Match current profile	
E	Various	Various	Varioussimilar to Unit 3	

Installed Cost vs Water Savings

Unit 4, San Juan Generating Station

Unit Installed Cost vs Water Savings

Unit 4, San Juan Generating Station

Projected Water Savings, AF/year

Unit Op Cost vs Water Savings

Unit 4, San Juan Generating Station

Projected Water Savings, AF/year

Summary Comparisons for Unit	4			
San Juan Generating Station				
		Sup		
	Α	В	С	D
Configuration	Series	Series	Series	Split
Water Savings, %	27.0%	25.7%	26.1%	24.4%
Waer Savings, AF/yr	1,422	1,351	1,375	1,284
Water Savings, AF/yr/MW	2.6	2.5	2.5	2.3
Foot Print Area, sq. ft.	43,056	44,425	42,336	39,585
AC Fan Powr, HP	3,200	3,588	4,400	4,054
Add'l Pumping Power, HP	236	1,086	1,005	640
Wet Tower Power Reductin, HP	-1,074	0	0	-754
Total Add'l Power, HP	2,362	4,674	5,405	3,940
Avg Cold Water Temp, F	80.0	68.7	68.7	67.4
Avg Backpressure, "Hg	2.57	1.88	1.88	1.77
Avg Heat Rate Increase, %	0.17%	0.01%	0.01%	0.00%
Add'l Coal Consumed, TPY	3,444	249	249	0
Equipment Cost	\$4,000,000	\$6,818,000	\$6,401,000	\$9,290,000
Total Installed Cost	\$14,410,000	\$19,562,000	\$19,306,000	\$23,232,000
Power Cost @ \$0.025/kWh	\$297,000	\$587,000	\$679,000	\$495,000
Power Replmt Cost @ \$15/MWh	\$178,000	•	•	\$297,000
Maintenance	\$479,000	\$243,000	\$479,000	\$288,000
Add'l Coal Consumption	\$29,000	\$2,000	\$2,000	\$0
Capital Recovery @ 7.5%	\$1,414,000	\$1,919,000	\$1,894,000	\$2,279,000
Annual Operating Cost	\$2,397,000	\$3,103,000	\$3,461,000	\$3,359,000
Unit Op Cost, \$/AF	\$1,686	\$2,296	\$2,517	\$2,615

Summary

- ✓ Water savings of 20 to 30% are achievable
- ✓ Costs depend on meteorology and desired cold water temperature
- ✓ Most economical with
 - flat heat rate curve
 - low fuel cost
 - low projected value (or replacement cost) of power
- Equivalent cost of water is very high
- ✓ Sometimes water is "not there at any price"

Marley AAHE--New Tower

AAHE--Retrofit

